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FTU for heart wall  

In this section we develop an sFTU representing a cylindrical tube segment of a pressure vessel such 
as the left ventricle, an artery, a tract of the digestive system, etc. The primary assumption is that the 
segment is thick-walled but undergoes simple kinematic deformations – axial extension, radial 
inflation and axial twist. 

Axial extension, radial inflation and axial twist of a cylindrical tube  

Consider the cylindrical tube shown in Figure 1(a).  

 
   (a)  (b) 

Figure 1 Coordinate systems for the cylinder in the (a) undeformed, and (b) deformed states. The cylinder is 
stretched axially by 𝜆𝜆𝑎𝑎, inflated by 𝑟𝑟 = 𝑓𝑓(𝑅𝑅) and twisted by 𝜙𝜙 radians per unit axial distance. 

A point defined by material coordinates (𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3, ) ≡ (𝑅𝑅,Θ, Z) in the undeformed state has cartesian 
coordinates:  
 𝑋𝑋1 = 𝑅𝑅 cos𝛩𝛩 
 𝑋𝑋2 = 𝑅𝑅 sin𝛩𝛩 
 𝑋𝑋3 = 𝑍𝑍 

The gradient tensor  𝜕𝜕𝑋𝑋𝑖𝑖
𝜕𝜕𝜈𝜈𝛼𝛼

= �
cos𝛩𝛩 −𝑅𝑅 sin𝛩𝛩 0
sin𝛩𝛩 𝑅𝑅 cos𝛩𝛩 0

0 0 1
�    

generates the metric tensors in the undeformed state: 

 𝐴𝐴𝛼𝛼𝛼𝛼 = 𝜕𝜕𝑋𝑋𝑘𝑘
𝜕𝜕𝜈𝜈𝛼𝛼

𝜕𝜕𝑋𝑋𝑘𝑘
𝜕𝜕𝜈𝜈𝛽𝛽

= �
1 0 0
0 𝑅𝑅2 0
0 0 1

�;   𝐴𝐴𝛼𝛼𝛼𝛼 = �
1 0 0
0 𝑅𝑅−2 0
0 0 1

�;   𝐴𝐴 = det𝐴𝐴𝛼𝛼𝛼𝛼 = 𝑅𝑅2  

We now consider the simultaneous extension, inflation and torsion of the cylindrical tube, defined by 
the cylindrically symmetric deformation  
 𝑟𝑟 = 𝑓𝑓(𝑅𝑅) 
 𝜃𝜃 = 𝛩𝛩 + 𝑍𝑍𝜙𝜙𝑎𝑎 
 𝑧𝑧 = 𝜆𝜆𝑎𝑎𝑍𝑍  

in which a material point which is located at (𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3) ≡ (𝑅𝑅,𝛩𝛩,𝑍𝑍) in the undeformed state moves to 
the location (𝑟𝑟, 𝜃𝜃, z) in the deformed state. The deformation is defined by the axial extension ratio 𝜆𝜆, 
the twist ϕ per unit of axial length, and the radial function 𝑟𝑟 = 𝑓𝑓(𝑅𝑅), which will be chosen to ensure 
incompressibility of the tissue – no change in tube volume. Note that planes orthogonal to the axis of 
the tube are rotated about that axis and shifted in the z direction but remain as planes. We are also 
assuming that there is no shearing in the (𝑟𝑟, 𝜃𝜃)-plane. 

The cartesian coordinates of the deformed state are: 
 𝑥𝑥1 = 𝑟𝑟 cos 𝜃𝜃 = 𝑓𝑓(𝑅𝑅). cos�𝛩𝛩 + 𝑍𝑍𝜙𝜙𝑎𝑎� 
 𝑥𝑥2 = 𝑟𝑟 sin 𝜃𝜃 = 𝑓𝑓(𝑅𝑅). sin�𝛩𝛩 + 𝑍𝑍𝜙𝜙𝑎𝑎� 
 𝑥𝑥3 = 𝑧𝑧 = 𝜆𝜆𝑎𝑎𝑍𝑍 
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Deformation gradient tensor 

The deformation gradient tensor is therefore:  

   𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝜈𝜈𝛼𝛼

= �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. cos𝜃𝜃 −𝑟𝑟 sin𝜃𝜃 −𝑟𝑟𝜙𝜙𝑎𝑎 sin 𝜃𝜃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. sin 𝜃𝜃 𝑟𝑟 cos 𝜃𝜃 𝑟𝑟𝜙𝜙𝑎𝑎 cos 𝜃𝜃
0 0 𝜆𝜆𝑎𝑎

�;    

giving the metric tensors in the deformed state 

 𝑎𝑎𝛼𝛼𝛼𝛼 = 𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝜈𝜈𝛼𝛼

𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝜈𝜈𝛽𝛽

= �
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

0 0
0 𝑟𝑟2 𝜙𝜙𝑎𝑎𝑟𝑟2

0 𝜙𝜙𝑎𝑎𝑟𝑟2 𝜆𝜆𝑎𝑎2 + (𝑟𝑟𝜙𝜙𝑎𝑎)2
�;  𝑎𝑎 = det 𝑎𝑎𝛼𝛼𝛼𝛼 = 𝑟𝑟2𝜆𝜆𝑎𝑎2 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

, 

and  

 𝑎𝑎𝛼𝛼𝛼𝛼 =

⎣
⎢
⎢
⎢
⎢
⎡�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−2

0 0

0 𝑟𝑟−2 + �𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎
�
2 𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎2

0 𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎2

𝜆𝜆𝑎𝑎−2⎦
⎥
⎥
⎥
⎥
⎤

;    det  𝑎𝑎𝛼𝛼𝛼𝛼 = 1
𝑎𝑎

 . (1) 

Note on units: If 𝑟𝑟 is in cm, 𝑎𝑎, 𝑎𝑎22 are cm2, 𝑎𝑎23 is cm, 𝑎𝑎22 is cm-2 and 𝑎𝑎23 is cm-1 while 𝑎𝑎11, 𝑎𝑎11, 𝑎𝑎33 & 𝑎𝑎33 
are dimensionless. 

Imposing incompressibility  

Incompressibility requires 𝑎𝑎 = 𝐴𝐴 and hence  

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
𝑟𝑟2𝜆𝜆𝑎𝑎2 = 𝑅𝑅2  or  𝜆𝜆𝑎𝑎 𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1  
or  
  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑

𝜆𝜆𝑎𝑎𝑑𝑑
 

and equation 1 becomes,  

 𝑎𝑎𝛼𝛼𝛼𝛼 =

⎣
⎢
⎢
⎢
⎢
⎡�
𝜆𝜆𝑎𝑎𝑑𝑑
𝑑𝑑
�
2

0 0

0 𝑟𝑟−2 + �𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎
�
2 𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎2

0 𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎2

𝜆𝜆𝑎𝑎−2⎦
⎥
⎥
⎥
⎥
⎤

. (2) 

Integrating across the wall of the cylinder, 

  𝜆𝜆𝑎𝑎 ∫ 𝑟𝑟𝑑𝑑𝑑𝑑0 𝑑𝑑𝑟𝑟 = ∫ 𝑅𝑅𝑑𝑑
𝑑𝑑0

𝑑𝑑𝑅𝑅 , 

where 𝑅𝑅0 and 𝑅𝑅 are the inner and outer radii of the undeformed tube, and 𝑟𝑟0 and 𝑟𝑟 are the 
corresponding radii for the deformed tube. 
Thus 
 𝜆𝜆𝑎𝑎(𝑟𝑟2 − 𝑟𝑟02) = (𝑅𝑅2 − 𝑅𝑅02) 

which is consistent with no change on the volume of the cylinder.  

Therefore, for any radius 𝑅𝑅 ≥ 𝑅𝑅0, 𝑟𝑟 = 𝑓𝑓(𝑅𝑅) is given by   

 𝑟𝑟 = �𝑟𝑟02 + 𝜆𝜆𝑎𝑎−1(𝑅𝑅2 − 𝑅𝑅02). (3) 
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Green-Cauchy strain tensor 

The Green strain tensor is  

 𝐸𝐸𝛼𝛼𝛼𝛼 = 1
2
�𝑎𝑎𝛼𝛼𝛼𝛼 − 𝐴𝐴𝛼𝛼𝛼𝛼� = 1

2
�
� 𝑑𝑑
𝜆𝜆𝑎𝑎𝑑𝑑
�
2
− 1 0 0

0 𝑟𝑟2 − 𝑅𝑅2 𝜙𝜙𝑎𝑎𝑟𝑟2

0 𝜙𝜙𝑎𝑎𝑟𝑟2 𝜆𝜆𝑎𝑎2 + (𝑟𝑟𝜙𝜙𝑎𝑎)2 − 1

�. (4) 

Note on units: If 𝑟𝑟 is in cm, 𝐸𝐸22 is cm2 and 𝐸𝐸23 is cm, while 𝐸𝐸11 & 𝐸𝐸33 are dimensionless 

Muscle fibre stretch  

Now consider a muscle fibre embedded in the cylinder and lying in a plane of constant 𝑅𝑅 in the 
undeformed state, moving to a plane of constant 𝑟𝑟 in the deformed state, as illustrated in Figure 2.   

 
   (a)  (b) 

Figure 2. Deformation of a muscle fibre lying on a surface of constant radius. 

Undeformed fibre 

The cartesian coordinates of a material point lying on the fibre on a cylinder of radius 𝑅𝑅 are given by 
 𝑋𝑋1 = 𝑅𝑅 cos(𝑡𝑡𝛩𝛩𝑑𝑑) 
 𝑋𝑋2 = 𝑅𝑅 sin(𝑡𝑡𝛩𝛩𝑑𝑑) 
 𝑋𝑋3 = 𝑡𝑡 

where 𝑡𝑡 is a normalised material parameter (0 ≤ 𝑡𝑡 ≤ 1) that traces the change in circumferential angle 
from zero to 𝛩𝛩𝑑𝑑  as the fibre winds around the cylinder of height 𝑍𝑍 = 1  (see Figure 3a).  

  
Figure 3. (a) A muscle fibre of fibre angle 𝛼𝛼𝑓𝑓 lying on the undeformed cylindrical surface of radius 𝑅𝑅; (b) The 
unwrapped cylindrical surface. The length of the fibre is cosec 𝛼𝛼𝑓𝑓. 

The fibre tangent is:  

 𝒕𝒕 = �𝜕𝜕𝑋𝑋1
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋2
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋3
𝜕𝜕𝜕𝜕
� = {−𝑅𝑅𝛩𝛩𝑑𝑑 sin(𝑡𝑡𝛩𝛩𝑑𝑑) ,𝑅𝑅𝛩𝛩𝑑𝑑 cos(𝑡𝑡𝛩𝛩𝑑𝑑) , 1}, 

or, normalised, 

 𝒕𝒕� = {−𝑅𝑅𝛩𝛩𝑑𝑑 sin(𝑡𝑡𝛩𝛩𝑑𝑑) ,𝑅𝑅𝛩𝛩𝑑𝑑 cos(𝑡𝑡𝛩𝛩𝑑𝑑) , 1}/�1 + (𝑅𝑅𝛩𝛩𝑑𝑑)2. 

The unit vector tangent to this surface in the 𝑋𝑋1,𝑋𝑋2 plane at point 𝑡𝑡 is:  

 𝒔𝒔� = {− sin(𝑡𝑡𝛩𝛩𝑑𝑑) , cos(𝑡𝑡𝛩𝛩𝑑𝑑) , 0}, 
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and the angle between 𝒕𝒕� and 𝒔𝒔� is therefore (using 𝑅𝑅𝛩𝛩𝑑𝑑 = cot𝛼𝛼𝑓𝑓) 

  cos−1(�̂�𝒕. 𝒔𝒔�) = cos−1 � 𝑅𝑅𝛩𝛩𝑅𝑅
�1+(𝑅𝑅𝛩𝛩𝑅𝑅)2� = cos−1 � cot𝛼𝛼𝑓𝑓

�1+cot2 𝛼𝛼𝑓𝑓
� = 𝛼𝛼𝑓𝑓 ,  

as expected. Note that the cartesian coordinates of a point 𝑡𝑡 on the fibre at a radius of 𝑅𝑅 are: 

 

 𝑋𝑋1 = 𝑅𝑅 cos(𝑡𝑡𝛩𝛩𝑑𝑑) = 𝑅𝑅 cos �𝑡𝑡 cot𝛼𝛼𝑓𝑓
𝑑𝑑

� 

 𝑋𝑋2 = 𝑅𝑅 sin 𝑡𝑡𝛩𝛩𝑑𝑑 = 𝑅𝑅 sin �𝑡𝑡 cot𝛼𝛼𝑓𝑓
𝑑𝑑

� 
 𝑋𝑋3 = 𝑡𝑡  

In the undeformed state, the length of the fibre lying within the cylindrical surface is:  

 ∫ ��𝜕𝜕𝑋𝑋1
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝑋𝑋2
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝑋𝑋3
𝜕𝜕𝜕𝜕
�
2

.𝑑𝑑𝑡𝑡𝜕𝜕=1
𝜕𝜕=0 = ∫ �1 + cot2 𝛼𝛼𝑓𝑓 .𝑑𝑑𝑡𝑡𝜕𝜕=1

𝜕𝜕=0 = cosec𝛼𝛼𝑓𝑓  (5) 

as shown in Figure 3(b).  

Deformed fibre  
Figure 4 shows the change in fibre length for inflation (𝑅𝑅 → 𝑟𝑟), axial extension (ratio 𝜆𝜆𝑎𝑎) and twist (𝜙𝜙𝑎𝑎).  

 
 (a)  (b)   (c) 
Figure 4. Fibre deformation: (a) Undeformed muscle fibre of fibre angle 𝛼𝛼 lying on the undeformed cylindrical 
surface of radius 𝑅𝑅; (b) The same fibre lying on the deformed surface which is inflated to radius 𝑟𝑟, extended 
axially by 𝜆𝜆𝑎𝑎, and twisted through angle 𝜙𝜙𝑎𝑎; (c) The fibre appears as a straight line on the cylindrical surface.   

In the deformed state,  

 𝑥𝑥1 = 𝑟𝑟 cos 𝑡𝑡𝛩𝛩𝑑𝑑  
 𝑥𝑥2 = 𝑟𝑟 sin 𝑡𝑡𝛩𝛩𝑑𝑑 
 𝑥𝑥3 = 𝜆𝜆𝑎𝑎𝑡𝑡  

and, from Figure 4(c),  

 𝑟𝑟𝛩𝛩𝑑𝑑 = 𝜆𝜆𝑎𝑎 cot𝛽𝛽𝑓𝑓 

giving the deformed fibre angle 𝛽𝛽𝑓𝑓 in terms of the angle 𝛼𝛼𝑓𝑓 used to define the undeformed fibre: 

 𝛽𝛽𝑓𝑓 = cot−1 �𝑑𝑑𝛩𝛩𝑟𝑟
𝜆𝜆𝑎𝑎
� 

The length of the deformed fibre is:  

 ∫ ��𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝑥𝑥3
𝜕𝜕𝜕𝜕
�
2

.𝑑𝑑𝑡𝑡𝜕𝜕=1
𝜕𝜕=0 = �(𝑟𝑟𝛩𝛩𝑑𝑑)2 + 𝜆𝜆𝑎𝑎2 = 𝜆𝜆𝑎𝑎�1 + cot2 𝛽𝛽𝑓𝑓 = 𝜆𝜆𝑎𝑎 cosec𝛽𝛽𝑓𝑓, 

as shown in Figure 4(c). The fibre stretch ratio is therefore 

 𝜆𝜆𝑓𝑓 = 𝜆𝜆𝑎𝑎 cosec 𝛼𝛼𝑓𝑓
cosec𝛼𝛼𝑓𝑓

= 𝜆𝜆𝑎𝑎 sin𝛼𝛼𝑓𝑓 cosec𝛽𝛽𝑓𝑓,                   

where 
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  𝜆𝜆𝑎𝑎 cosec𝛽𝛽𝑓𝑓 = �𝜆𝜆𝑎𝑎2 + (𝑟𝑟𝛩𝛩𝑑𝑑)2 = �𝜆𝜆𝑎𝑎2 + 𝑟𝑟2�𝛩𝛩𝑅𝑅 + 𝜙𝜙𝑎𝑎�
2 = �𝜆𝜆𝑎𝑎2 + 𝑟𝑟2 �cot𝛼𝛼𝑓𝑓

𝑑𝑑
+ 𝜙𝜙𝑎𝑎�

2
. 

Therefore 

 𝜆𝜆𝑓𝑓 = sin𝛼𝛼𝑓𝑓 �𝜆𝜆𝑎𝑎2 + 𝑟𝑟2 �cot𝛼𝛼𝑓𝑓
𝑑𝑑

+ 𝜙𝜙𝑎𝑎�
2
,                                        

and using equation 1 (𝑟𝑟 = �𝑟𝑟02 + 𝜆𝜆𝑎𝑎−1(𝑅𝑅2 − 𝑅𝑅02) − ensuring incompressibility), 

 𝜆𝜆𝑓𝑓 = sin𝛼𝛼𝑓𝑓 �𝜆𝜆𝑎𝑎2 + �𝑟𝑟02 + 𝜆𝜆𝑎𝑎−1(𝑅𝑅2 − 𝑅𝑅02)� �cot𝛼𝛼𝑓𝑓
𝑑𝑑

+ 𝜙𝜙𝑎𝑎�
2
 

or 

 𝜆𝜆𝑓𝑓 = �𝜆𝜆𝑎𝑎2 sin2 𝛼𝛼𝑓𝑓 + �𝑟𝑟02 + 𝜆𝜆𝑎𝑎−1(𝑅𝑅2 − 𝑅𝑅02)� �cos𝛼𝛼𝑓𝑓
𝑑𝑑

+ 𝜙𝜙𝑎𝑎 sin𝛼𝛼𝑓𝑓�
2
. (6) 

This equation provides the relationship, at any radial position 𝑅𝑅, between the fibre angle (𝛼𝛼𝑓𝑓), the 
three parameters (𝑟𝑟0, 𝜆𝜆𝑎𝑎 , 𝜙𝜙𝑎𝑎) defining the deformation of the incompressible thick-walled cylinder, 
and the resulting fibre stretch 𝜆𝜆𝑓𝑓. 

Simplified cases 

When 𝛼𝛼𝑓𝑓 = 0, equation 6 becomes 

 𝜆𝜆𝑓𝑓 = 1
𝑑𝑑
�𝑟𝑟02 + 𝜆𝜆𝑎𝑎−1(𝑅𝑅2 − 𝑅𝑅02) = 𝑑𝑑

𝑑𝑑
 

which is independent of axial twist, as expected (see Figure 5). 

  
Figure 5 The simplest case: deformation of a circumferential muscle fibre lying on a surface of constant radius. 

With no axial twist (𝜙𝜙𝑎𝑎 = 0) and no axial stretch (𝜆𝜆𝑎𝑎 = 1), equation 6 becomes 

 𝜆𝜆𝑓𝑓 = �sin2 𝛼𝛼𝑓𝑓 + �𝑟𝑟02 + (𝑅𝑅2 − 𝑅𝑅02)� �cos𝛼𝛼𝑓𝑓
𝑑𝑑

�
2

. 

Transmurally varying fibre angle  
Now consider a range of fibre angles across the wall thickness, as illustrated in Figure 6.  

    
Figure 6 Fibres with varying angles shown at three different depths through the wall in the undeformed state. 

Results (using OpenCOR []) are shown in Figure 7a for a cylinder of initial inner radius 𝑅𝑅0 = 1 expanded 
to 𝑟𝑟0 = 1.2 with no axial extension or rotation. The fibres are circumferential and there is a fall off in 
fibre extension ratio from 𝜆𝜆𝑓𝑓 = 𝑑𝑑

𝑑𝑑
= 1.2 at 𝑅𝑅 = 1 to 𝜆𝜆𝑓𝑓 = 𝑑𝑑

𝑑𝑑
= 1.0536 at the outer wall 𝑅𝑅 = 2 (where 𝑟𝑟 =

√1.22 + 3 = 2.107) – a range of fibre extension of about 𝚫𝚫𝝀𝝀𝒂𝒂 = 𝟎𝟎.𝟏𝟏𝟏𝟏. In Figure 7(b) the fibre angle is 

𝑅𝑅 𝑟𝑟 
inflation  

Ratio 
 𝜆𝜆𝑓𝑓 = 2𝜋𝜋𝑑𝑑

2𝜋𝜋𝑑𝑑
= 𝑟𝑟
𝑅𝑅 

𝑅𝑅1 



6 
 

set to vary linearly across the wall from 𝛼𝛼𝑓𝑓 = 90deg at the inner wall to 𝛼𝛼𝑓𝑓 = −60deg at the outer wall 
(results labelled with 𝜆𝜆𝑎𝑎 = 1). Note that this transmural fibre distribution produces a smaller range of 
fibre stretch (𝚫𝚫𝝀𝝀𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎). When the cylinder is also extended axially with 𝜆𝜆𝑎𝑎 = 1.1, the range of fibre 
stretch is further reduced (𝚫𝚫𝝀𝝀𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎). Finally, applying an additional axial twist of 𝜙𝜙𝑎𝑎 = -1.15deg 
further reduces the range of fibre stretch to 𝚫𝚫𝝀𝝀𝒂𝒂 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (i.e. a four-fold reduction in the variation of 
myofilament stretch ratio is achieved with a combination axial extension and twist combined with 
transmural fibre angle variation).   

 

      
 (a) (b) 
Figure 7 From top to bottom: 𝑟𝑟(𝑅𝑅), 𝛼𝛼𝑓𝑓(𝑅𝑅), 𝜆𝜆𝑓𝑓(𝑅𝑅) for (a) 𝛼𝛼𝑓𝑓 = 0, 𝜆𝜆𝑎𝑎 = 1, 𝜙𝜙𝑎𝑎 = 0; (b) 𝛼𝛼𝑓𝑓 = +90deg to -60deg, for 
three loading configurations: (i) 𝜆𝜆𝑎𝑎 = 1, 𝜙𝜙𝑎𝑎 = 0, (ii) 𝜆𝜆𝑎𝑎 = 1.1, 𝜙𝜙𝑎𝑎 = 0, and (iii) 𝜆𝜆𝑎𝑎 = 1.1, 𝜙𝜙𝑎𝑎 = −0.02 (-1.15deg). 

Stress tensors 

There are three alternative stress tensors commonly used in continuum mechanics. The Cauchy stress 
tensor 𝑻𝑻� = �𝑇𝑇�𝑖𝑖𝑖𝑖� (symmetric) has physically meaningful components which are defined as force per unit 
area of the current deformed body and are referred to local cartesian coordinates (𝑥𝑥�1, 𝑥𝑥�2, 𝑥𝑥�3). The 2nd 
Piola-Kirchhoff stress tensor 𝑻𝑻 = {𝑇𝑇𝛼𝛼𝛽𝛽} is used in defining constitutive equations since it defines stress 
as a force per unit area of the undeformed body (needed because the strains are relative to the 
undeformed body). The 2nd P-K stress tensor is also symmetric and invariant to rigid body rotation. In 
this application it has components that refer to the material coordinates (𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3) that are chosen to 
coincide with (𝑅𝑅,𝛩𝛩,𝑍𝑍) in the undeformed body and (𝑟𝑟, 𝜃𝜃, 𝑧𝑧) in the deformed body. A third, the 1st Piola-
Kirchhoff stress tensor, is part way between these two as it defines components with respect to the 
undeformed areas but aligns the component directions with the deformed state and in general is not 
symmetric. However, in the present cylindrical coordinate configuration it is the same as the 2nd Piola-
Kirchhoff stress tensor. 
The relationship between the Cauchy and 2nd Piola-Kirchhoff stress tensors is given by  

 𝑻𝑻� = 𝜌𝜌
𝜌𝜌0
𝑭𝑭𝑻𝑻𝑭𝑭𝑇𝑇    or   𝑇𝑇� 𝑖𝑖𝑖𝑖 = 𝜌𝜌

𝜌𝜌0

𝜕𝜕𝑥𝑥�𝑖𝑖
𝜕𝜕𝜈𝜈𝛼𝛼

𝑇𝑇𝛼𝛼𝛼𝛼
𝜕𝜕𝑥𝑥�𝑖𝑖
𝜕𝜕𝜈𝜈𝛽𝛽

 , 

where 

 𝑭𝑭 = 𝜕𝜕𝑥𝑥�𝑖𝑖
𝜕𝜕𝜈𝜈𝛼𝛼

= �
1 0 0
0 𝑟𝑟 0
0 0 1

� 

and 𝜌𝜌 and 𝜌𝜌0 are the material densities of the deformed and undeformed body. For incompressible 
materials, 𝜌𝜌 = 𝜌𝜌0. 

𝑟𝑟(𝑅𝑅) 

𝛼𝛼𝑓𝑓(𝑅𝑅) 

𝜆𝜆𝑓𝑓(𝑅𝑅) 

𝑟𝑟(𝑅𝑅) 

𝛼𝛼𝑓𝑓(𝑅𝑅) 

𝜆𝜆𝑓𝑓(𝑅𝑅) 
𝜆𝜆𝑎𝑎 = 1.1 

𝜆𝜆𝑎𝑎 = 1 

 𝜙𝜙𝑎𝑎 = 1.1 

𝜆𝜆𝑎𝑎 = 1.1 
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Strain energy density  

Soft biological tissue exhibits ‘strain stiffening’: as the tissue is stretched, the amount of energy per 
unit volume needed to achieve another equal increment of stretch in that direction increases []. The 
same highly nonlinear behaviour is seen with a shearing deformation. The initial strain energy is 
typically very small at low strain and asymptotes to a limiting strain beyond which the tissue is 
damaged. Some hysteresis is also present, but this is very small for cardiac tissue.   

Soft biological tissues are seldom isotropic, are occasionally transversely isotropic, but are more 
generally orthotropic (the properties are different in three orthogonal directions). Here we assume 
orthotropy and assume that the total strain energy density 𝑊𝑊 is the sum of energy terms associated 
with stretching and shearing in the material coordinates (𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3) mentioned above.    

These three characteristics of strain stiffening, orthotropy and strain mode independence are 
captured with the following ‘pole-zero’ strain energy density function []: 

 𝑊𝑊 = ∑ 𝑊𝑊�𝐸𝐸𝛼𝛼𝛽𝛽�𝛼𝛼𝛽𝛽     (J.L-1), 
where 

 𝑊𝑊�𝐸𝐸𝛼𝛼𝛼𝛼� =
𝑘𝑘𝛼𝛼𝛽𝛽
2𝑐𝑐𝛼𝛼𝛽𝛽

.
𝐸𝐸𝛼𝛼𝛽𝛽
2

�𝑐𝑐𝛼𝛼𝛽𝛽−�𝐸𝐸𝛼𝛼𝛽𝛽��
2 , (no summation on 𝛼𝛼,𝛽𝛽), (7) 

as illustrated in Figure 8a, and where the Green strain tensor 𝐸𝐸𝛼𝛼𝛼𝛼 is given by equation 4.  

  
 (a) (b) 
Figure 8 The strain stiffening behaviour characteristic of soft biological tissue, showing asymptotic behaviour 
(to a ‘pole’ at 𝐸𝐸𝛼𝛼𝛽𝛽 = 𝑐𝑐𝛼𝛼𝛽𝛽). (a) The strain energy density; and (b) the 2nd Piola-Kirchhoff stress. 

The contravariant 2nd Piola-Kirchhoff stress tensor 𝑻𝑻 = {𝑇𝑇𝛼𝛼𝛽𝛽} is obtained from the strain energy 
density as 

 𝑇𝑇𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝛼𝛼𝛽𝛽

+ 𝑝𝑝𝑎𝑎𝛼𝛼𝛼𝛼 + 𝑇𝑇0𝑎𝑎1𝛼𝛼𝑎𝑎1
𝛼𝛼 =

𝜕𝜕𝜕𝜕�𝐸𝐸𝛼𝛼𝛽𝛽�

𝜕𝜕𝐸𝐸𝛼𝛼𝛽𝛽
+ 𝑝𝑝𝑎𝑎𝛼𝛼𝛼𝛼 + 𝑇𝑇0𝑎𝑎1𝛼𝛼𝑎𝑎1

𝛼𝛼  (8) 

where  𝑝𝑝 is the hydrostatic pressure (for the assumed incompressible material) and 𝑇𝑇0 is an actively 
generated myofilament stress that lies in the fibre direction 𝜂𝜂1(see below). Substituting (7) into (8),  

 𝑇𝑇𝛼𝛼𝛼𝛼 =
𝑘𝑘𝛼𝛼𝛽𝛽
𝑐𝑐𝛼𝛼𝛽𝛽

�
𝐸𝐸𝛼𝛼𝛽𝛽

�𝑐𝑐𝛼𝛼𝛽𝛽−�𝐸𝐸𝛼𝛼𝛽𝛽��
2 +

𝐸𝐸𝛼𝛼𝛽𝛽
2

�𝑐𝑐𝛼𝛼𝛽𝛽−�𝐸𝐸𝛼𝛼𝛽𝛽��
3� + 𝑝𝑝𝑎𝑎𝛼𝛼𝛼𝛼 + 𝑇𝑇0𝑎𝑎1𝛼𝛼𝑎𝑎1

𝛼𝛼 

or 
 𝑇𝑇𝛼𝛼𝛼𝛼 = 𝑘𝑘𝛼𝛼𝛼𝛼

𝐸𝐸𝛼𝛼𝛽𝛽
�𝑐𝑐𝛼𝛼𝛽𝛽−�𝐸𝐸𝛼𝛼𝛽𝛽��

3 + 𝑝𝑝𝑎𝑎𝛼𝛼𝛼𝛼 + 𝑇𝑇0𝑎𝑎1𝛼𝛼𝑎𝑎1
𝛼𝛼  (9) 

Note on units: If 𝑟𝑟 is in cm (consistent with volume in litres), then 

• 𝑘𝑘11, 𝑇𝑇11, 𝑝𝑝, 𝑇𝑇0 are J.L-1 (=kPa) 
• 𝑐𝑐22, 𝐸𝐸22 are cm2; 𝑘𝑘22 is J.L-1.cm2; 𝑎𝑎22 is cm-2; 𝑇𝑇22 is J.L-1.cm-2 
• 𝑘𝑘33, 𝑇𝑇33 are J.L-1  
• 𝑐𝑐23, 𝐸𝐸23 are cm; 𝑘𝑘23 is J.L-1.cm; 𝑎𝑎23 is cm-1; 𝑇𝑇23 is J.L-1.cm-1 
• all other quantities are dimensionless 

 

𝑇𝑇𝛼𝛼𝛽𝛽 

𝑒𝑒𝛼𝛼𝛽𝛽 𝑐𝑐𝛼𝛼𝛽𝛽 

Slope is 2𝑘𝑘𝛼𝛼𝛼𝛼 

Asymptotes to 𝑐𝑐𝛼𝛼𝛽𝛽 

0 0 

𝑊𝑊�𝑒𝑒𝛼𝛼𝛽𝛽� 

𝑒𝑒𝛼𝛼𝛽𝛽 𝑐𝑐𝛼𝛼𝛽𝛽 

Slope is zero 

Asymptotes to pole at 𝑐𝑐𝛼𝛼𝛽𝛽 
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With incompressibility,  

 𝐸𝐸𝛼𝛼𝛼𝛼 = 1
2
�
� 𝑑𝑑
𝜆𝜆𝑎𝑎𝑑𝑑
�
2
− 1 0 0

0 𝑟𝑟2 − 𝑅𝑅2 𝜙𝜙𝑎𝑎𝑟𝑟2

0 𝜙𝜙𝑎𝑎𝑟𝑟2 𝜆𝜆𝑎𝑎2 + (𝑟𝑟𝜙𝜙𝑎𝑎)2 − 1

�.  (10) 

Note that since the fibre axis varies transmurally and does not align with any wall coordinate axes, 𝑇𝑇0 
must be transformed by the mixed metric tensor  

  𝑎𝑎1𝛼𝛼 = 𝜕𝜕𝜈𝜈𝛼𝛼
𝜕𝜕𝜂𝜂1

 

where (𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3, ) ≡ (𝑅𝑅,𝛩𝛩,𝑍𝑍) are the wall material coordinates and 𝜂𝜂1 is the fibre direction material 
coordinate defined in the undeformed reference state. Since the fibres lie in the (𝛩𝛩,𝑍𝑍) plane, this is in 
fact given by (see Figure 3b) 

  𝑎𝑎1𝛼𝛼 = 𝜕𝜕𝜈𝜈𝛼𝛼
𝜕𝜕𝜂𝜂1

= �0, 1

𝑟𝑟
cos𝛼𝛼𝑓𝑓 , sin𝛼𝛼𝑓𝑓�     (or 𝛽𝛽𝑓𝑓depending on how we define 𝑇𝑇0), 

 and hence  

 𝑎𝑎1𝛼𝛼𝑎𝑎1
𝛼𝛼 = �

0 0 0
0 1

𝑟𝑟2 cos2 𝛼𝛼𝑓𝑓
1

𝑟𝑟
cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓

0 1

𝑟𝑟
cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓 sin2 𝛼𝛼𝑓𝑓

�. (11) 

The hydrostatic pressure term 𝑝𝑝 (effectively the Lagrange multiplier on the incompressibility 
condition) must be determined from stress boundary conditions. In a transmural sense these are the 
left ventricular pressure (inner surface) and zero traction at the epicardial boundary (outer surface).  

Actively generated stress  

We now consider the 𝑇𝑇0 term in equation 9, representing the contribution to force balance of a stress 
that is generated by myofilament cross-bridges. The relationship of this term to fibre extension ratio 
and its velocity is considered in detail below, but we first explore the consequences of imposing a 
constant value of 𝑇𝑇0. 

Stress equilibrium 

The 2nd Piola-Kirchhoff stress tensor 

𝑇𝑇𝛼𝛼𝛼𝛼 = �
𝑇𝑇𝑑𝑑𝑑𝑑 0 0

0 𝑇𝑇𝜃𝜃𝜃𝜃 𝑇𝑇𝜃𝜃𝜃𝜃
0 𝑇𝑇𝜃𝜃𝜃𝜃 𝑇𝑇𝜃𝜃𝜃𝜃

� =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

0 0

0 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

0 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃⎦

⎥
⎥
⎥
⎤

+ 𝑝𝑝

⎣
⎢
⎢
⎢
⎢
⎡�𝜆𝜆𝑎𝑎𝑑𝑑𝑑𝑑 �

2
0 0

0 𝑟𝑟−2 + �𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎
�
2 𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎2

0 𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎2

𝜆𝜆𝑎𝑎−2⎦
⎥
⎥
⎥
⎥
⎤

+ 𝑇𝑇0 �

0 0 0
0 1

𝑑𝑑2
cos2 𝛼𝛼𝑓𝑓

1
𝑑𝑑

cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓
0 1

𝑑𝑑
cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓 sin2 𝛼𝛼𝑓𝑓

�, 

has three direct stress components (in the (𝑟𝑟,𝜃𝜃, 𝑧𝑧)-directions), but only one shear stress (𝑇𝑇𝜃𝜃𝜃𝜃 = 𝑇𝑇𝜃𝜃𝜃𝜃). 

The Cauchy stress tensor is  

 𝑇𝑇� 𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

0 0

0 𝑟𝑟2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

0 𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃 ⎦

⎥
⎥
⎥
⎤

+ 𝑝𝑝

⎣
⎢
⎢
⎢
⎢
⎡�𝜆𝜆𝑎𝑎𝑑𝑑𝑑𝑑 �

2
0 0

0 1 + �𝑑𝑑𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎
�
2 𝑑𝑑𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎2

0 𝑑𝑑𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎2

𝜆𝜆𝑎𝑎−2⎦
⎥
⎥
⎥
⎥
⎤

+ 𝑇𝑇0 �
0 0 0
0 cos2 𝛼𝛼𝑓𝑓 cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓
0 cos𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓 sin2 𝛼𝛼𝑓𝑓

�,  (12) 

Note that 𝑊𝑊, 𝑝𝑝 and 𝑇𝑇0 all have units of J.L-1 (energy density or force per unit area).   

Stress equilibrium is ensured by ∇.𝑻𝑻� = 0 [Malvern]. Note that 𝜆𝜆𝑎𝑎 and 𝜙𝜙𝑎𝑎 are constants and 𝛼𝛼𝑓𝑓 varies 
radially. All components of stress vary radially but not in the circumferential or axial directions. Since 
the only stress gradients are in the radial direction, the only equilibrium equation that needs to be 
considered is  

 1
𝑑𝑑
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟𝑇𝑇�𝑟𝑟𝑟𝑟� − 1

𝑑𝑑
𝑇𝑇�𝜃𝜃𝜃𝜃 = 0 ,  or  𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑟𝑟𝑇𝑇�𝑟𝑟𝑟𝑟� = 𝑇𝑇�𝜃𝜃𝜃𝜃 , 
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and hence 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟
+ 𝑝𝑝𝑟𝑟3 𝜆𝜆𝑎𝑎

2

𝑑𝑑2
� = 𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃
+ 𝑝𝑝 �1 +

𝜙𝜙𝑎𝑎
2

𝜆𝜆𝑎𝑎
2 𝑟𝑟2� + 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓 , (13) 

where 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

= 𝑘𝑘𝑟𝑟𝑟𝑟 .𝐸𝐸𝑟𝑟𝑟𝑟
(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)3

,  with   𝐸𝐸𝑑𝑑𝑑𝑑 = 1
2
�� 𝑑𝑑

𝜆𝜆𝑎𝑎𝑑𝑑
�
2
− 1�, (14) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

= 𝑘𝑘𝜃𝜃𝜃𝜃 .𝐸𝐸𝜃𝜃𝜃𝜃
(𝑐𝑐𝜃𝜃𝜃𝜃−|𝐸𝐸𝜃𝜃𝜃𝜃|)3

,  with   𝐸𝐸𝜃𝜃𝜃𝜃 = 1
2

(𝑟𝑟2 − 𝑅𝑅2), (15) 

Note the two boundary conditions on 𝑇𝑇�𝑑𝑑𝑑𝑑:  

 𝑇𝑇�𝑑𝑑𝑑𝑑�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= −𝑝𝑝𝐿𝐿𝐿𝐿    and   𝑇𝑇�𝑑𝑑𝑑𝑑�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

= 0. (16) 

Note that 𝑊𝑊, 𝑝𝑝 and 𝑇𝑇0 all have units of J.m-3 (energy density).  

Expanding (13),  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

+ 𝑟𝑟 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� + 𝑟𝑟3 𝜆𝜆𝑎𝑎
2

𝑑𝑑2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑝𝑝𝜆𝜆𝑎𝑎2 �
3𝑑𝑑2

𝑑𝑑2
− 2𝑑𝑑3

𝑑𝑑3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃
+ 𝑝𝑝 �1 + �𝑑𝑑𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎
�
2
� + 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓 ,  

or 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑2

𝑑𝑑3𝜆𝜆𝑎𝑎2
�𝑝𝑝 �1 + �𝑑𝑑𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎
�
2
− 𝜆𝜆𝑎𝑎2 �

3𝑑𝑑2

𝑑𝑑2
− 2𝑑𝑑3

𝑑𝑑3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�� + 𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟
− 𝑟𝑟 𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� + 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓�, 

where the incompressibility condition (3)  

  𝑅𝑅2 = 𝑅𝑅02 + 𝜆𝜆𝑎𝑎(𝑟𝑟2 − 𝑟𝑟02) 
gives 
 2𝑅𝑅 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2𝜆𝜆𝑎𝑎𝑟𝑟   or    𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜆𝜆𝑎𝑎

𝑑𝑑
𝑑𝑑

 .  

Therefore 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑2

𝑑𝑑3𝜆𝜆𝑎𝑎2
�𝑝𝑝 �1 + �𝑑𝑑𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎
�
2
− 𝜆𝜆𝑎𝑎2 �

3𝑑𝑑2

𝑑𝑑2
− 2𝜆𝜆𝑎𝑎𝑑𝑑4

𝑑𝑑4
�� + 𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟
− 𝑟𝑟 𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� + 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓�, (17) 

where 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� = 𝑘𝑘𝑑𝑑𝑑𝑑
𝑑𝑑

𝑑𝑑𝐸𝐸𝑟𝑟𝑟𝑟
� 𝐸𝐸𝑟𝑟𝑟𝑟

(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)3
� . 1

2
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑

2

𝜆𝜆𝑎𝑎
2𝑑𝑑2

− 1� = 𝑘𝑘𝑟𝑟𝑟𝑟
2

. 𝑐𝑐𝑟𝑟𝑟𝑟+2𝐸𝐸𝑟𝑟𝑟𝑟
(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)4

�−2 � 𝑑𝑑
𝜆𝜆𝑎𝑎
�
2 1
𝑑𝑑3

+ 2𝑑𝑑
𝜆𝜆𝑎𝑎

2𝑑𝑑2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 

or 

 𝑟𝑟 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� = 𝑘𝑘𝑟𝑟𝑟𝑟
𝜆𝜆𝑎𝑎

2 . 𝑐𝑐𝑟𝑟𝑟𝑟+2𝐸𝐸𝑟𝑟𝑟𝑟
(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)4

�𝜆𝜆𝑎𝑎 − �𝑑𝑑
𝑑𝑑
�
2
�. 

To simplify (17), let  

 𝑄𝑄1 = 1 + �𝑑𝑑𝜙𝜙𝑎𝑎
𝜆𝜆𝑎𝑎
�
2
− 𝜆𝜆𝑎𝑎2 �

3𝑑𝑑2

𝑑𝑑2
− 2𝜆𝜆𝑎𝑎𝑑𝑑4

𝑑𝑑4
�     (units: dimensionless) 

 𝑄𝑄2 = 𝑟𝑟2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

= 𝑟𝑟2 𝑘𝑘𝜃𝜃𝜃𝜃 .𝐸𝐸𝜃𝜃𝜃𝜃
(𝑐𝑐𝜃𝜃𝜃𝜃−|𝐸𝐸𝜃𝜃𝜃𝜃|)3

− 𝑘𝑘𝑟𝑟𝑟𝑟 .𝐸𝐸𝑟𝑟𝑟𝑟
(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)3

     (units: J.L-1) 

 𝑄𝑄3 = 𝑟𝑟 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� = 𝑟𝑟 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

� = 𝑘𝑘𝑟𝑟𝑟𝑟
𝜆𝜆𝑎𝑎

2 . 𝑐𝑐𝑟𝑟𝑟𝑟+2𝐸𝐸𝑟𝑟𝑟𝑟
(𝑐𝑐𝑟𝑟𝑟𝑟−|𝐸𝐸𝑟𝑟𝑟𝑟|)4

�𝜆𝜆𝑎𝑎 − �𝑑𝑑
𝑑𝑑
�
2
�    (units: J.L-1) 

Then (17) becomes  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑2

𝑑𝑑3𝜆𝜆𝑎𝑎2
�𝑝𝑝𝑄𝑄1 + 𝑄𝑄2 − 𝑄𝑄3 + 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓� (units: J.L-1.cm-1) 

 

Zero traction boundary condition  

The zero traction boundary condition 𝑇𝑇�𝑑𝑑𝑑𝑑�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

= 0 at the outer radial surface provides the initial 

condition for solving (17):   

 𝑇𝑇�𝑑𝑑𝑑𝑑�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

+ 𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖 �
𝜆𝜆𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖
𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

�
2

= 0, 
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gives 

 𝑝𝑝 = 𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖 = −� 𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖
𝜆𝜆𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

�
2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

= −� 𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖
𝜆𝜆𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

�
2 𝑘𝑘𝑟𝑟𝑟𝑟 .𝐸𝐸𝑟𝑟𝑟𝑟

𝑒𝑒𝑒𝑒𝑖𝑖

�𝑐𝑐𝑟𝑟𝑟𝑟−�𝐸𝐸𝑟𝑟𝑟𝑟
𝑒𝑒𝑒𝑒𝑖𝑖��

3 .    

Now using 

 𝑠𝑠 = 𝑑𝑑−𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

 ,    or   𝑟𝑟 = 𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 + 𝑠𝑠�𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 − 𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖� , 

we integrate (16) for �̂�𝑝 = 𝑝𝑝 − 𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖  from 𝑠𝑠 = 0 (𝑟𝑟 = 𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖) to 𝑠𝑠 = 1 (𝑟𝑟 = 𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒) with 

 𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑

= �𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 − 𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖�
𝑑𝑑2

𝑑𝑑3𝜆𝜆𝑎𝑎2
���̂�𝑝 + 𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖� �1 + �𝑑𝑑𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎
�
2
− 𝜆𝜆𝑎𝑎2 �

3𝑑𝑑2

𝑑𝑑2
− 2𝜆𝜆𝑎𝑎𝑑𝑑4

𝑑𝑑4
��+ 𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝜃𝜃𝜃𝜃
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟
− 𝑟𝑟 𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟

�+ 𝑇𝑇0 cos2 𝛼𝛼𝑓𝑓�, (18) 

where the incompressibility condition (3) gives 

  𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 = �𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒2 + 1
𝜆𝜆𝑎𝑎
�𝑅𝑅𝑒𝑒𝑑𝑑𝑖𝑖2 − 𝑅𝑅𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒2 � 

The solution yields a value of 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 = 𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖 + �̂�𝑝|𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  which, with the first of (16), gives 

 𝑝𝑝𝐿𝐿𝐿𝐿 = −𝑇𝑇�𝑑𝑑𝑑𝑑�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝜕𝜕𝑊𝑊

𝜕𝜕𝐸𝐸𝑟𝑟𝑟𝑟
�
𝑑𝑑=𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 �
𝜆𝜆𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�
2
 (19) 

Axial force and torque    

In the analysis so far, the axial extension 𝜆𝜆𝑎𝑎 and axial twist 𝜙𝜙𝑎𝑎 have been specified, which requires the 
direct stress 𝑇𝑇33 = 𝑇𝑇𝜃𝜃𝜃𝜃 and the shear stress 𝑇𝑇32 = 𝑇𝑇𝜃𝜃𝜃𝜃  to be matched by corresponding boundary 
tractions in order to satisfy axial stress equilibrium. The radial distributions of these stresses, 
expressed as Cauchy stresses from (12), are:     

 𝑇𝑇� 𝜃𝜃𝜃𝜃 = 𝑘𝑘𝜃𝜃𝜃𝜃𝐸𝐸𝜃𝜃𝜃𝜃
(𝑐𝑐𝜃𝜃𝜃𝜃−|𝐸𝐸𝜃𝜃𝜃𝜃|)3

+ 𝑝𝑝𝜆𝜆𝑎𝑎−2 + 𝑇𝑇0 sin2 𝛼𝛼𝑓𝑓,  where 𝐸𝐸𝜃𝜃𝜃𝜃 = 𝜆𝜆𝑎𝑎2 + (𝑟𝑟𝜙𝜙𝑎𝑎)2 − 1, 

and  
 𝑇𝑇� 𝜃𝜃𝜃𝜃 =  𝑟𝑟 𝑘𝑘𝜃𝜃𝜃𝜃𝐸𝐸𝜃𝜃𝜃𝜃

(𝑐𝑐𝜃𝜃𝜃𝜃−|𝐸𝐸𝜃𝜃𝜃𝜃|)3
+ 𝑝𝑝 𝑟𝑟𝜙𝜙𝑎𝑎

𝜆𝜆𝑎𝑎
2 + 𝑇𝑇0 cos 𝛼𝛼𝑓𝑓 sin𝛼𝛼𝑓𝑓,  where 𝐸𝐸𝜃𝜃𝜃𝜃 = 𝜙𝜙𝑎𝑎𝑟𝑟2. 

Note that these stresses vary radially. Integrating over the area of the deformed cylinder at an axial 
(constant 𝑧𝑧) location gives the total axial force and torque:  

 𝑓𝑓𝜃𝜃𝜃𝜃 = ∫ 𝑇𝑇� 𝜃𝜃𝜃𝜃𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

2𝜋𝜋𝑟𝑟.𝑑𝑑𝑟𝑟     or    𝑑𝑑
𝑑𝑑𝑑𝑑
𝑓𝑓𝜃𝜃𝜃𝜃 = 2𝜋𝜋𝑟𝑟𝑇𝑇� 𝜃𝜃𝜃𝜃 (20) 

and  
 𝑓𝑓𝜃𝜃𝜃𝜃 = ∫ 𝑇𝑇� 𝜃𝜃𝜃𝜃𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2𝜋𝜋𝑟𝑟.𝑑𝑑𝑟𝑟    or    𝑑𝑑

𝑑𝑑𝑑𝑑
𝑓𝑓𝜃𝜃𝜃𝜃 = 2𝜋𝜋𝑟𝑟𝑇𝑇� 𝜃𝜃𝜃𝜃. (21) 

The axial extension 𝜆𝜆𝑎𝑎 and axial twist 𝜙𝜙𝑎𝑎 can now be chosen to make the net axial force and torque 
zero, but the zero-mean radially distributed boundary tractions are still needed to maintain the simple 
kinematics of the deforming cylinder.  
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Example solution  

We illustrate the solution of the equations above under a specified loading condition with a linearly 
varying fibre orientation (𝛼𝛼𝑓𝑓 = +90deg to -60deg) and an active stress 𝑇𝑇0 = 1. In the undeformed state, 
the cylinder has an inner radius of 𝑅𝑅 = 1 and an outer radius of 𝑅𝑅 = 2. The material parameters are all 
set with the poles at 𝑐𝑐𝛼𝛼𝛼𝛼 = 1.2 (20% strain) and the scaling parameters at 𝑘𝑘𝛼𝛼𝛼𝛼 = 1. These should of 
course be set to different values to reflect both the anisotropy of the myocardial tissue and the 
difference between tension and compression, and can also have transmurally varying values. Figure 9 
shows the transmural (1 ≤ 𝑅𝑅 ≤ 2) strain, stress and pressure distributions for a 20% radial expansion 
(𝑟𝑟0 = 1.2) with 𝜙𝜙𝑎𝑎 = 0 (gives zero net torque) and 𝜆𝜆𝑎𝑎 = 0.95 (gives zero net axial force). 

 
Figure 9 Transmural distributions of strain and stress, etc, for 𝑟𝑟0 = 1.2 with 𝜙𝜙𝑎𝑎 = 0 and 𝜆𝜆𝑎𝑎 = 0.95. The radial 
coordinate in the undeformed cylinder varies from 𝑅𝑅 = 1 to 𝑅𝑅 = 2. All quantities shown are plotted against 𝑅𝑅. 

 

The radial coordinate in the deformed 
cylinder varies from the prescribed 1.2 (20% 
inflation) at the inner radius 𝑅𝑅 = 1 to the 
calculated 2.15 at the outer 𝑅𝑅 = 2.  

The components of the Green strain tensor. 
Note that 𝐸𝐸33 is set by the prescribed 
constant value of 𝜆𝜆𝑎𝑎 = 0.95. The largest 
strain is the circumferential 𝐸𝐸22. Note that 
the radial strain 𝐸𝐸11 is compressive. 

These are intermediate quantities used in 
the differential equation for pressure.  

𝑝𝑝 is the hydrostatic pressure, found by 
integrating a differential equation arising 
from radial stress equilibrium.  

The components of the 2nd Piola-Kirchhoff 
stress tensor. Note that 𝑇𝑇11 is zero at the 
outer radial boundary and gives the cavity 
pressure (-0.8) at the inner radius. The axial 
stress  𝑇𝑇33 and shear stress 𝑇𝑇23 vary radially 
about a zero mean.  

These show the intermediate results when 
integrating the axial stresses (from 𝑅𝑅 = 2 to 
𝑅𝑅 = 1) to find the total axial force 𝑓𝑓33 and 
axial torque 𝑓𝑓23.  Note that 𝜆𝜆𝑎𝑎 and 𝜙𝜙𝑎𝑎  are 
chosen so that both 𝑓𝑓33 and 𝑓𝑓23 end up 
close to zero (see values at the inner radius). 

The  fibre stretch 𝜆𝜆𝑓𝑓. Note that 𝜆𝜆𝑓𝑓 at the 
inner radius is equal to the prescribed axial 
stretch 𝜆𝜆𝑎𝑎because the fibre angle is aligned 
with the axial direction at this boundary. 

The variation of muscle fibre angle 𝛼𝛼𝑓𝑓  from 
90deg at the inner radius to -60deg at the 
outer radius.  
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Driving forces for LV volume change  

Figure 10 illustrates the forces driving LV volume change during various phases of the cardiac cycle: 

(a) Atrial systole.  

In this phase the mitral value is open and the expansion of the LV FTU is 
driven by the small increase in LV pressure 𝑝𝑝𝐿𝐿𝐿𝐿 associated with LA 
contraction. A further equation is needed to link 𝑝𝑝𝐿𝐿𝐿𝐿 with atrial pressure 
𝑝𝑝𝐿𝐿𝐿𝐿 and the flow through the mitral valve (𝑣𝑣𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚)  that drives the change 
in LV volume 𝑞𝑞𝐿𝐿𝐿𝐿 = 𝜆𝜆𝑎𝑎𝜋𝜋𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒2 :   

 𝑝𝑝𝐿𝐿𝐿𝐿 − 𝑝𝑝𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚 . 𝑣𝑣𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚  ,  

where 𝑅𝑅𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚  is the flow resistance of the mitral valve, and hence 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑞𝑞𝐿𝐿𝐿𝐿 = 𝑣𝑣𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚 = 𝑑𝑑𝐿𝐿𝐿𝐿−𝑑𝑑𝐿𝐿𝐿𝐿

𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚𝑟𝑟𝑎𝑎𝑚𝑚
    and   𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 = �

𝑞𝑞𝐿𝐿𝐿𝐿
𝜆𝜆𝑎𝑎𝜋𝜋

 . (22) 

FTU: The boundary condition is now 𝑝𝑝𝐿𝐿𝐿𝐿(𝑡𝑡) and during the solution of equation 22 (in a python 
script), the current value of 𝑞𝑞𝐿𝐿𝐿𝐿 and hence 𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒  is used in (18) and (19), with 𝑇𝑇0 = 0, to return 𝑝𝑝𝐿𝐿𝐿𝐿.     

(b) Isovolumic contraction.  

The rise in active myocyte tension (𝑇𝑇0) is initiated by electrical activation 
of the myocardium (the QRS complex of the ECG), calcium release and 
cross-bridge cycling. This rapidly raises 𝑝𝑝𝐿𝐿𝐿𝐿, so that almost immediately 
the mitral valve closes and the LV undergoes a pressure rise under 
isovolumic conditions that ends when the aortic valve opens. The 
dominant force is now produced in the fibre directions by active 
myofilament contraction.  

FTU: 𝑟𝑟0 fixed; 𝑇𝑇0 > 0;  𝑝𝑝𝐿𝐿𝐿𝐿  computed.  

(c) Ventricular systole. 

When 𝑝𝑝𝐿𝐿𝐿𝐿 > 𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑎𝑎, the LV ejects blood. Systole ends when mechanical 
feedback from the deforming tissue causes Ca2+ to detach from TnC to 
remove cross-bridge access to sites on the actin filament, so that 𝑇𝑇0 drops 
and 𝑝𝑝𝐿𝐿𝐿𝐿  begins to drop. This phase also needs an additional equation 
relating LV volume change ( 𝑑𝑑

𝑑𝑑𝜕𝜕
𝑞𝑞𝐿𝐿𝐿𝐿) to the flow (𝑣𝑣𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒) through the 

aortic valve  

 𝑝𝑝𝐿𝐿𝐿𝐿 − 𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑎𝑎 = 𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒 . 𝑣𝑣𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒  ,  

where 𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒 is the flow resistance of the aortic valve, and hence 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑞𝑞𝐿𝐿𝐿𝐿 = 𝑣𝑣𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒 = 𝑑𝑑𝐿𝐿𝐿𝐿−𝑑𝑑𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚𝑎𝑎

𝑑𝑑𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑎𝑎 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒
    and   𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 = �

𝑞𝑞𝐿𝐿𝐿𝐿
𝜆𝜆𝑎𝑎𝜋𝜋

 .(22) 

FTU: The boundary condition is now 𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑎𝑎(𝑡𝑡); 𝑇𝑇0 > 0.   

(d) Isovolumic relaxation.  

When 𝑝𝑝𝐿𝐿𝐿𝐿 < 𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑎𝑎 the aortic valve closes and 𝑝𝑝𝐿𝐿𝐿𝐿  falls rapidly under 
isovolumic conditions.   

FTU: 𝑟𝑟0 fixed; 𝑇𝑇0 = 0;  𝑝𝑝𝐿𝐿𝐿𝐿  computed. 

 

 

𝑅𝑅𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒  

𝑝𝑝𝐿𝐿𝐿𝐿(𝑡𝑡) 

𝑝𝑝𝐿𝐿𝐿𝐿 

𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑖𝑖𝑐𝑐 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒 

𝑝𝑝𝑎𝑎𝑒𝑒𝑑𝑑𝜕𝜕𝑎𝑎(𝑡𝑡) 
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(e) Rapid LV filling. 

When 𝑝𝑝𝐿𝐿𝐿𝐿 < 𝑝𝑝𝐿𝐿𝐿𝐿  the mitral valve opens. The stored elastic energy drives 
expansion and inflow from the LA using equation 22.    

FTU: The boundary condition is now 𝑝𝑝𝐿𝐿𝐿𝐿(𝑡𝑡); 𝑇𝑇0 = 0.  

 

 
 
These 5 phases of the cardiac cycle are shown in Figure 10 relative to other cardiac events.   

     
Figure 10 The key events in the cardiac cycle. (a) .. (d) indicate the driving forces on the LV FTU during four 
phases of the cardiac cycle: atrial systole, ventricular systole, isovolumetric relaxation, and ventricular filling.  

Rapid LV filling Ventricular 
systole 

Atrial  
systole 

Isovolumic contraction 

Diastasis 

Isovolumic relaxation 

LV volume 

ECG P 

R 

S 

P 

Q 

T 

LV pressure 

LA pressure 

Aortic pressure 
Aortic valve  

opens 

Aortic valve closes 

Mitral valve opens Mitral valve  
closes 

Aortic blood flow 

a 
c 

v 
Venous pulse 

Heart sounds 
1 2 3 4 

(e) 

(d) 

(a) 

(c) 

(b) 

𝑅𝑅𝑚𝑚𝑖𝑖𝜕𝜕𝑑𝑑𝑎𝑎𝑚𝑚 𝑣𝑣𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒  

𝑝𝑝𝐿𝐿𝐿𝐿(𝑡𝑡) 
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Relating deformation of cylinder to deformation of the left ventricle  

One strategy would be to link the cylinder deformation with a PCA mode of ventricular deformation.   

 

 

 

 

 

 

 

 

 

 

Active tension 𝑇𝑇0 can be defined by the HMT model as follows. 

 

6.6 Myofilament mechanics 
We first present a constitutive model for isometric tension, the so-called fading-memory model that 
captures the key features of muscle fibre dynamics (including an explicit reproduction of the classic 
Hill force-velocity relation), and then a model of calcium activation of the cross-bridges.  

Isometric tension-length-Ca2+ relation  

The deformed length of a muscle fibre divided by its undeformed length is denoted by the muscle 
stretch 𝜆𝜆. The muscle tension developed at a fixed 𝜆𝜆 is called the isometric tension 𝑇𝑇0(𝜆𝜆). Since this has 
a dependence on the level of intracellular calcium [𝐶𝐶𝑎𝑎2+]𝑖𝑖, we refer to 𝑇𝑇0(𝜆𝜆, [𝐶𝐶𝑎𝑎2+]𝑖𝑖) as the isometric 
tension-length-Ca2+ relation - see Figure 6.6.1, which also illustrates the relationship with the passive 
tension-length relation 𝑇𝑇𝑑𝑑(𝜆𝜆). 

  
Figure 6.6.1 The active and passive isometric tension-length relations for a skeletal muscle fibre.  

Fading memory model of muscle fibre mechanics 

Dynamic length changes in a muscle fibre are small in comparison to the corresponding changes in 
tension. For example, a sudden length change of less than 1% causes muscle tension to fall by 100%. 
But the relationship between muscle fibre tension and the velocity of steady shortening, for example, 
is characteristically highly non-linear. We therefore propose that some (as yet unspecified) static 
nonlinear function of tension, 𝑄𝑄(𝑇𝑇,𝑇𝑇0), can be expressed as a linear superposition of dynamic length 
changes:  

 𝑄𝑄(𝑇𝑇,𝑇𝑇0) = ∫ Φ(𝑡𝑡 − 𝜏𝜏)�̇�𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏𝜕𝜕
−∞  , 

100kPa 

0.85 1.0 1.2 

𝑇𝑇0(𝜆𝜆) 
𝑇𝑇 

𝑇𝑇𝑑𝑑(𝜆𝜆) 

𝜆𝜆 

𝑇𝑇0(𝜆𝜆 = 0.85) 

𝑇𝑇𝑑𝑑(𝜆𝜆 = 0.85) 
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where �̇�𝜆 = 𝑑𝑑𝜆𝜆
𝑑𝑑𝜕𝜕

  is the muscle fibre velocity (s-1), and Φ(𝑡𝑡) = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 𝑒𝑒−𝛼𝛼𝑖𝑖𝜕𝜕 is a material response function 
that is expressed as a sum of exponential decay terms (since memory ‘fades’ – recent events are more 
significant than older events): 

 𝑄𝑄(𝑇𝑇,𝑇𝑇0) = ∑ 𝐴𝐴𝑖𝑖 ∫ 𝑒𝑒−𝛼𝛼𝑖𝑖(𝜕𝜕−𝜏𝜏)𝜕𝜕
−∞ �̇�𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑖𝑖  (6.6.1) 

Under steady state conditions the RHS of (6) is zero and the function 𝑄𝑄(𝑇𝑇,𝑇𝑇0) must be defined such 
that 𝑄𝑄(𝑇𝑇0,𝑇𝑇0) = 0. A system defined by (6) is known in the system identification literature as a `Wiener 
cascade model' - a linear dynamic system followed by a static nonlinearity. 

Two further experimental observations can now be used. The first is that all tension measurements 
on muscle scale with the isometric tension and therefore 𝑄𝑄(𝑇𝑇,𝑇𝑇0) = 𝑄𝑄(𝑇𝑇/𝑇𝑇0). The second is that 
tension recovery following a step change in length shows evidence of three distinct physical processes: 
the initial fast recovery with a slight oscillation is indicative of a second order process (e.g. myosin 
head rotation in the model by Huxley and Simmons, 1971) and the subsequent slow recovery phase is 
evidence of a first order process (the crossbridge detachment/attachment cycle in the Huxley, 1957, 
model with the rate limiting step being detachment). We therefore limit the number of rate constants 
to 3 and (6) becomes  

 𝑄𝑄(𝑇𝑇/𝑇𝑇0) = ∑ 𝐴𝐴𝑖𝑖 ∫ 𝑒𝑒−𝛼𝛼𝑖𝑖(𝜕𝜕−𝜏𝜏)𝜕𝜕
−∞ �̇�𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑖𝑖=1,3  (6.6.2) 

where 𝛼𝛼1 is the rate constant associated with the first order slow tension recovery, and 𝛼𝛼2 and 𝛼𝛼3 are 
the rate constants for the second order fast recovery process in Figure 6.6.2(a). 

   
Figure 6.6.2 Tension response to a rapid shortening step (magnitude Δ𝜆𝜆 and duration Δ𝑡𝑡). The tension drops 
almost instantaneously from the isometric tension 𝑇𝑇0 to a post-step value 𝑇𝑇1 before a fast recovery phase, an 
oscillatory phase, and then a slow recovery to the isometric value for the new length. 

A third experimental observation, on the relationship between the constant muscle shortening 
velocity and a constant load, is now used to determine the functional form of 𝑄𝑄(𝑇𝑇/𝑇𝑇0).  

Constant velocity experiments 

A parameterised form of the nonlinear 𝑄𝑄(𝑇𝑇/𝑇𝑇0) function can be determined from constant velocity 
experiments. In these experiments the muscle is servo-controlled to shorten at a constant rate, or 
shortens at a constant rate (following an initial transient) in response to a reduction in tension to a 
constant value less than 𝑇𝑇0. The plot of tension versus velocity is called a force/velocity curve. These 
curves are typically hyperbolic and are accurately described for tetanised (maximally activated) muscle 
by the equation first proposed by Hill (1938): 

 −𝐿𝐿
𝑎𝑎𝐿𝐿0

= �̇�𝜆
𝑎𝑎𝐿𝐿0

= 𝑇𝑇1/𝑇𝑇0−1
𝑇𝑇1/𝑇𝑇0+𝑎𝑎

  

where 𝑉𝑉0 is the maximum velocity (achieved when 𝑇𝑇 = 0) and 𝑎𝑎 is a parameter which controls the 
curvature of the force/velocity relation (the parameter 𝑎𝑎 here is chosen to be non-dimensional, the 𝑎𝑎 
in Hill's original equation is equivalent here to 𝑎𝑎𝑇𝑇0). As with force recovery following a length step, the 
force/velocity curves scale with isometric tension 𝑇𝑇0. 

(a) 

(b) 

(c) 
Δ𝜆𝜆 

t 

𝜆𝜆 

0 

𝑇𝑇1 

𝑇𝑇0 

t 

𝑇𝑇 

fast recovery 

oscillation 

slow recovery 

0 

𝑇𝑇1
𝑇𝑇0

 

1 

0 Δ𝜆𝜆 

Δ𝑡𝑡 = 1𝑚𝑚𝑠𝑠 

Δ𝑡𝑡 = 0𝑚𝑚𝑠𝑠 
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The unloaded shortening velocity 𝑉𝑉0 has had a special significance for muscle physiologists because it 
appeared to be independent of length and level of activation, at least for lengths greater than resting 
length (𝜆𝜆 > 1). For 𝜆𝜆 < 1 the passive muscle structures are in compression and the `unloaded' 
shortening is then shortening against an internal load. 

  
Figure 6.6.3  

Ignoring the two rate constants 𝛼𝛼2, 𝛼𝛼3 associated with the initial transient following the tension step 
(since this has decayed by the time the force/velocity measurements are made) and putting �̇�𝜆 = −𝑉𝑉 
(the constant velocity of shortening), (5.8.2) reduces to 𝑄𝑄(𝑇𝑇/𝑇𝑇0) = −𝐴𝐴1𝑉𝑉/𝛼𝛼1. An exact match to Hill's 
force/velocity relation [Hill, 1938] is then obtained by choosing 𝑄𝑄(𝑇𝑇/𝑇𝑇0) = 𝑇𝑇/𝑇𝑇0−1

𝑇𝑇/𝑇𝑇0+𝑎𝑎
 and 𝑉𝑉0 = 𝛼𝛼1/𝑎𝑎𝐴𝐴1, 

giving 

 �̇�𝜆 = −𝑉𝑉 = 𝛼𝛼1
𝐿𝐿1

𝑇𝑇/𝑇𝑇0−1
𝑇𝑇/𝑇𝑇0+𝑎𝑎

 . (6.6.3) 

The fading memory model of crossbridge mechanics is now given by 

 𝑇𝑇/𝑇𝑇0−1
𝑇𝑇/𝑇𝑇0+𝑎𝑎

= ∑ 𝐴𝐴𝑖𝑖 ∫ 𝑒𝑒−𝛼𝛼𝑖𝑖(𝜕𝜕−𝜏𝜏)𝜕𝜕
−∞ �̇�𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏3

𝑖𝑖=1  

or  
 𝑇𝑇 = 𝑇𝑇0

1+𝑎𝑎𝑎𝑎
1−𝑎𝑎

,  where 𝑄𝑄 = ∑ 𝐴𝐴𝑖𝑖 ∫ 𝑒𝑒−𝛼𝛼𝑖𝑖(𝜕𝜕−𝜏𝜏)𝜕𝜕
−∞ �̇�𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏3

𝑖𝑖=1  (6.6.4) 

Note that if length changes are relatively slow, one rate constant is sufficient and (9), using the Leibnitz 
formula for differentiating an integral, reduces to  

 𝑇𝑇 = 𝑇𝑇0
1+𝑎𝑎𝑎𝑎
1−𝑎𝑎

,   
where 
   𝑑𝑑𝑎𝑎

𝑑𝑑𝜕𝜕
= −𝛼𝛼1𝑄𝑄 + 𝐴𝐴1�̇�𝜆 . (6.6.5) 

Calcium binding and cross-bridge activation 

Calcium attaching to troponin C changes the molecular structure of tropomyosin such that sites on 
the thin filiament that were previously blocked, become available for cross-bridge head binding and 
tension development. The fraction of actin sites available for cross-bridge binding (denoted by z) is 
given by the following first order equation: 

 𝑑𝑑𝜃𝜃
𝑑𝑑𝜕𝜕

= 𝛼𝛼0 ��
[𝐶𝐶𝑎𝑎]𝑏𝑏

[𝐶𝐶𝑎𝑎]50
�
𝑒𝑒

. (1 − 𝑧𝑧) − 1� , (6.6.6) 

�̇�𝜆 

𝑉𝑉0 

0 
𝑇𝑇/𝑇𝑇0 

100kPa 

0.85 1.0 1.2 

𝑇𝑇0(𝜆𝜆) 
𝑇𝑇 

𝑇𝑇𝑑𝑑(𝜆𝜆) 

𝜆𝜆 

𝑇𝑇0(𝜆𝜆 = 0.85) 

𝑇𝑇𝑑𝑑(𝜆𝜆 = 0.85) 

[𝐶𝐶𝑎𝑎2+]𝑒𝑒 = 2.5mM 

𝜆𝜆 

𝑉𝑉𝑚𝑚𝑎𝑎𝑥𝑥 

1.0 1.2 0.85 

𝑉𝑉0(𝜆𝜆) 
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where [𝐶𝐶𝑎𝑎]𝑏𝑏 is the concentration of bound calcium, [𝐶𝐶𝑎𝑎]50 is the concentration at which 50% of the 
available troponin C sites are occupied by calcium, and 𝛼𝛼0 is the rate constant for calcium binding.  

 𝑑𝑑[𝐶𝐶𝑎𝑎]𝑏𝑏
𝑑𝑑𝜕𝜕

= 𝜌𝜌0[𝐶𝐶𝑎𝑎]𝑖𝑖 . �[𝐶𝐶𝑎𝑎]𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 − [𝐶𝐶𝑎𝑎]𝑏𝑏� 
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Coupling to the cardiovascular system 

Let 𝒗𝒗 be volumetric flow rate in m3 or L, with co-energy potential 𝒖𝒖 in J.m-3 or J.L-3 (the fluid pressure). 

Elastic storage in a compliant vessel is 𝒒𝒒 = ∫𝝊𝝊𝑑𝑑𝑡𝑡 where 𝝊𝝊 is the net flow into the elastic segment and 
𝒒𝒒 (m3) is the excess volume caused by dilation of that segment (see Figure 4.3.3). For flow through a 
vessel of length 𝑙𝑙, radius 𝑟𝑟, and wall thickness ℎ, the elasticity of the wall assuming a linear elastic 
material with modulus 𝐸𝐸, is  𝐸𝐸ℎ

2𝜋𝜋𝑑𝑑3𝑚𝑚
 . Inertial storage is 𝐿𝐿�̇�𝝊, where 𝐿𝐿 = 𝜌𝜌𝑚𝑚

𝜋𝜋𝑑𝑑2
 (Js2m−6), and the constitutive 

relation for resistance or dissipation is given by the Poiseuille relation: 𝛥𝛥𝒖𝒖 = R.𝝊𝝊,  where R = 8𝜂𝜂𝑚𝑚
𝜋𝜋𝑑𝑑4

 
(Js. m−6) is the resistance to axial flow (of viscosity 𝜂𝜂).  

 

Figure 4.3.3 Bond graph model of Poiseuille flow through a compliant blood vessel. Note that the central  
𝟎𝟎:𝒖𝒖𝟐𝟐 node imposes flow conservation that includes the vessel compliance. The two nodes 𝟏𝟏:𝝊𝝊𝟏𝟏 and 𝟏𝟏: 𝝊𝝊𝟑𝟑 link in the energy 
associated with dissipative resistance for Poiseuille flow and inertial resistance to flow. 
 
There are 10 state variables (𝝊𝝊𝟏𝟏-𝝊𝝊𝟑𝟑, 𝒖𝒖𝟏𝟏-𝒖𝒖𝟕𝟕) with three conservation equations:  

 𝒖𝒖𝟏𝟏 = 𝒖𝒖𝟐𝟐 + 𝒖𝒖𝟎𝟎 + 𝒖𝒖𝟏𝟏;       𝒖𝒖𝟐𝟐 = 𝒖𝒖𝟑𝟑 + 𝒖𝒖𝟎𝟎 + 𝒖𝒖𝟕𝟕;       𝝊𝝊𝟏𝟏 = 𝝊𝝊𝟐𝟐 + 𝝊𝝊𝟑𝟑;        

and the five constitutive laws, shown in the boxes on the right in Figure 4.8. Two boundary conditions 
are therefore needed, such as the upstream flow 𝝊𝝊𝟏𝟏 and the downstream pressure 𝒖𝒖𝟑𝟑. 

Note that the Laplace relation gives wall hoop stress 𝑇𝑇 = 𝑑𝑑
ℎ
𝒖𝒖𝟐𝟐 , where 𝑟𝑟 is vessel radius and h is wall 

thickness. The pressure 𝒖𝒖𝟐𝟐 is a nonlinear function of excess volume 𝒒𝒒𝟐𝟐: 𝒖𝒖𝟐𝟐 = 𝑢𝑢0𝑒𝑒𝑘𝑘𝒒𝒒𝟐𝟐, where 𝑢𝑢0 is the 
pressure when 𝒒𝒒𝟐𝟐 = 0. 

Refer to NS and include advective acceleration term.  
 
Branching blood vessel  

Flow through the flow bifurcation shown on the left in Figure 4.3.4 is represented by the bond graph 
model on the right. Inertial terms are omitted in this example but could be added to the 1:nodes as in 
Figure 4.3.3. 

 
Figure 4.3.4 Bond graph model of a branching vessel. Note that the compliance for the junction is associated 
with the 0:node at the bifurcation point, while the resistances of the parent (R1) and child branches (R2 and R3) 
are associated with 1:node flow terms. 

Excess volume 𝒒𝒒𝟐𝟐  

𝝊𝝊𝟏𝟏 
𝒖𝒖𝟏𝟏 

𝝊𝝊𝟑𝟑 
𝒖𝒖𝟑𝟑 

Resistance R1 

Elastance 

R3 = R1 =
8𝜂𝜂𝑙𝑙
𝜋𝜋𝑟𝑟4 

𝑙𝑙 𝑙𝑙 

𝒖𝒖𝟏𝟏 𝒖𝒖𝟕𝟕 

𝝊𝝊𝟐𝟐 

𝟎𝟎:𝒖𝒖𝟐𝟐 
𝒖𝒖𝟎𝟎 
𝟏𝟏:𝝊𝝊𝟑𝟑 𝒖𝒖𝟑𝟑 𝟏𝟏:𝝊𝝊𝟏𝟏 

𝒖𝒖𝟎𝟎 
𝒖𝒖𝟏𝟏 

𝒖𝒖𝟐𝟐 = 𝑝𝑝0𝑒𝑒𝑘𝑘𝒒𝒒𝟐𝟐 𝒖𝒖𝟎𝟎 = R1𝝊𝝊𝟏𝟏 𝒖𝒖𝟎𝟎 = R3𝝊𝝊𝟑𝟑 

𝒖𝒖𝟏𝟏 = L1�̇�𝝊𝟏𝟏 𝒖𝒖𝟕𝟕 = L3�̇�𝝊𝟑𝟑 

𝒖𝒖𝟎𝟎 𝒖𝒖𝟏𝟏 𝝊𝝊𝟏𝟏 

𝒖𝒖𝟐𝟐 
𝝊𝝊𝟐𝟐 

𝒖𝒖𝟑𝟑 
𝝊𝝊𝟑𝟑 

𝑅𝑅1 

𝑅𝑅2 

𝑅𝑅3 

𝐸𝐸4 

 

𝟎𝟎:𝒖𝒖𝟎𝟎 𝟏𝟏:𝝊𝝊𝟏𝟏 

𝝊𝝊𝟏𝟏 = (𝒖𝒖𝟏𝟏 − 𝒖𝒖𝟎𝟎)/R1 

𝒖𝒖𝟏𝟏 

𝒖𝒖𝟐𝟐 

𝝊𝝊𝟐𝟐 = (𝒖𝒖𝟎𝟎 − 𝒖𝒖𝟐𝟐)/R2 

𝑑𝑑
𝑑𝑑𝑡𝑡 𝒒𝒒𝟎𝟎 = 𝝊𝝊𝟏𝟏 − 𝝊𝝊𝟐𝟐 − 𝝊𝝊𝟑𝟑 

𝒖𝒖𝟎𝟎 = 𝑝𝑝0𝑒𝑒𝑘𝑘4𝒒𝒒𝟎𝟎 

𝟏𝟏:𝝊𝝊𝟐𝟐 

𝟏𝟏:𝝊𝝊𝟑𝟑 

𝒖𝒖𝟑𝟑 

𝝊𝝊𝟑𝟑 = (𝒖𝒖𝟎𝟎 − 𝒖𝒖𝟑𝟑)/R3 
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Coupling cardiac FTU to CV system 

 

 
   

 𝒖𝒖𝟏𝟏 = 𝒖𝒖𝟐𝟐 + 𝒖𝒖𝟎𝟎 + 𝒖𝒖𝟏𝟏;       𝒖𝒖𝟐𝟐 = 𝒖𝒖𝟑𝟑 + 𝒖𝒖𝟎𝟎 + 𝒖𝒖𝟕𝟕;       𝝊𝝊𝟏𝟏 = 𝝊𝝊𝟐𝟐 + 𝝊𝝊𝟑𝟑;        

Mass conservation 

0:𝑢𝑢𝐿𝐿𝐿𝐿 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑳𝑳𝑳𝑳 = 𝒗𝒗𝑷𝑷𝒗𝒗 − 𝒗𝒗𝑴𝑴𝑴𝑴 where 𝒖𝒖𝑳𝑳𝑳𝑳 = 𝒒𝒒𝑳𝑳𝑳𝑳/𝐶𝐶𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝐿𝐿 =  (L2J-1s-1) 

0:𝑢𝑢𝐿𝐿𝐿𝐿 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑳𝑳𝑴𝑴 = 𝒗𝒗𝑴𝑴𝑴𝑴 − 𝒗𝒗𝑳𝑳𝑴𝑴 where 𝒖𝒖𝑳𝑳𝑴𝑴 = 𝒒𝒒𝑳𝑳𝑴𝑴/𝐶𝐶𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝐿𝐿 =  (L2J-1s-1) 

0:𝑢𝑢𝑆𝑆𝑎𝑎 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑺𝑺𝒂𝒂 = 𝒗𝒗𝑳𝑳𝑴𝑴 − 𝒗𝒗𝑺𝑺𝒂𝒂 where 𝒖𝒖𝑺𝑺𝒂𝒂 = 𝒒𝒒𝑺𝑺𝒂𝒂/𝐶𝐶𝑆𝑆𝑎𝑎 𝐶𝐶𝑆𝑆𝑎𝑎 =  (L2J-1s-1) 

0:𝑢𝑢𝑆𝑆𝑣𝑣 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑺𝑺𝒗𝒗 = 𝒗𝒗𝑺𝑺𝒂𝒂 − 𝒗𝒗𝑺𝑺𝒗𝒗 where 𝒖𝒖𝑺𝑺𝒗𝒗 = 𝒒𝒒𝑺𝑺𝒗𝒗/𝐶𝐶𝑆𝑆𝑣𝑣 𝐶𝐶𝑆𝑆𝑣𝑣 =  (L2J-1s-1) 

0:𝑢𝑢𝑑𝑑𝐿𝐿 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑹𝑹𝑳𝑳 = 𝒗𝒗𝑺𝑺𝒗𝒗 − 𝒗𝒗𝑻𝑻𝑴𝑴 where 𝒖𝒖𝑹𝑹𝑳𝑳 = 𝒒𝒒𝑹𝑹𝑳𝑳/𝐶𝐶𝑑𝑑𝐿𝐿 𝐶𝐶𝑑𝑑𝐿𝐿 =  (L2J-1s-1) 

0:𝑢𝑢𝑑𝑑𝐿𝐿 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑹𝑹𝑴𝑴 = 𝒗𝒗𝑻𝑻𝑴𝑴 − 𝒗𝒗𝑷𝑷𝑴𝑴 where 𝒖𝒖𝑹𝑹𝑴𝑴 = 𝒒𝒒𝑹𝑹𝑴𝑴/𝐶𝐶𝑑𝑑𝐿𝐿 𝐶𝐶𝑑𝑑𝐿𝐿 =  (L2J-1s-1) 

0:𝑢𝑢𝑃𝑃𝑎𝑎 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑷𝑷𝒂𝒂 = 𝒗𝒗𝑷𝑷𝑴𝑴 − 𝒗𝒗𝑷𝑷𝑳𝑳 where 𝒖𝒖𝑷𝑷𝒂𝒂 = 𝒒𝒒𝑷𝑷𝒂𝒂/𝐶𝐶𝑃𝑃𝑎𝑎 𝐶𝐶𝑃𝑃𝑎𝑎 =  (L2J-1s-1) 

0:𝑢𝑢𝑃𝑃𝑣𝑣 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒒𝒒𝑷𝑷𝒗𝒗 = 𝒗𝒗𝑷𝑷𝒂𝒂 − 𝒗𝒗𝑷𝑷𝒗𝒗 where 𝒖𝒖𝑷𝑷𝒗𝒗 = 𝒒𝒒𝑷𝑷𝒗𝒗/𝐶𝐶𝑃𝑃𝑣𝑣 𝐶𝐶𝑃𝑃𝑣𝑣 =  (L2J-1s-1) 

Note:  𝑑𝑑
𝑑𝑑𝜕𝜕

(𝒒𝒒𝑳𝑳𝑳𝑳 + 𝒒𝒒𝑳𝑳𝑴𝑴 + 𝒒𝒒𝑺𝑺𝒂𝒂 + 𝒒𝒒𝑺𝑺𝒗𝒗 + 𝒒𝒒𝑹𝑹𝑳𝑳 + 𝒒𝒒𝑹𝑹𝑴𝑴 + 𝒒𝒒𝑷𝑷𝒂𝒂 + 𝒒𝒒𝑷𝑷𝒗𝒗) = 0 

 

 

Pulmonary circulation 
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𝐼𝐼𝑃𝑃𝑎𝑎 
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𝐶𝐶𝑃𝑃𝑎𝑎 
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𝑅𝑅𝑃𝑃𝑣𝑣 

𝟏𝟏:𝒗𝒗𝑷𝑷𝒗𝒗 

𝐶𝐶𝑃𝑃𝑣𝑣 

𝟎𝟎:𝒖𝒖𝑷𝑷𝒗𝒗 

𝟎𝟎:𝒖𝒖𝑳𝑳𝑳𝑳 

𝟏𝟏:𝒗𝒗𝑴𝑴𝑴𝑴 

𝟎𝟎:𝒖𝒖𝑳𝑳𝑴𝑴 

𝟏𝟏:𝒗𝒗𝑳𝑳𝑴𝑴 

𝑅𝑅𝑀𝑀𝐿𝐿 

𝐶𝐶𝐿𝐿𝐿𝐿 

𝑅𝑅𝐿𝐿𝐿𝐿 

𝐶𝐶𝐿𝐿𝐿𝐿 

𝟎𝟎:𝒖𝒖𝑹𝑹𝑳𝑳 

𝟏𝟏:𝒗𝒗𝑻𝑻𝑴𝑴 

𝟎𝟎:𝒖𝒖𝑹𝑹𝑴𝑴 

𝟏𝟏:𝒗𝒗𝑷𝑷𝑴𝑴 

𝑅𝑅𝑇𝑇𝐿𝐿 

𝐶𝐶𝑑𝑑𝐿𝐿 

𝑅𝑅𝑃𝑃𝐿𝐿 

𝐶𝐶𝑑𝑑𝐿𝐿 

𝐼𝐼𝑆𝑆𝑣𝑣 

𝑅𝑅𝑆𝑆𝑣𝑣 

𝟏𝟏:𝒗𝒗𝑺𝑺𝒗𝒗 

𝐶𝐶𝑆𝑆𝑣𝑣 

𝟎𝟎:𝒖𝒖𝑺𝑺𝒗𝒗 

𝐼𝐼𝑆𝑆𝑎𝑎 

𝑅𝑅𝑆𝑆𝑎𝑎 

𝟏𝟏:𝒗𝒗𝑺𝑺𝒂𝒂 

𝐶𝐶𝑆𝑆𝑎𝑎 

𝟎𝟎:𝒖𝒖𝑺𝑺𝒂𝒂 

(a) 

(b) 

(c) 

(d) 

(e) 
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Energy conservation 

1: 𝑣𝑣𝑀𝑀𝐿𝐿  𝒖𝒖𝑳𝑳𝑳𝑳 = 𝒖𝒖𝑳𝑳𝑴𝑴 + 𝑅𝑅𝑀𝑀𝐿𝐿𝒗𝒗𝑴𝑴𝑴𝑴 

1: 𝑣𝑣𝐿𝐿𝐿𝐿  𝒖𝒖𝑳𝑳𝑴𝑴 = 𝒖𝒖𝑺𝑺𝒂𝒂 + 𝑅𝑅𝐿𝐿𝐿𝐿𝒗𝒗𝑳𝑳𝑴𝑴 

1: 𝑣𝑣𝑆𝑆𝑎𝑎  𝒖𝒖𝑺𝑺𝒂𝒂 = 𝒖𝒖𝑺𝑺𝒗𝒗 + 𝑅𝑅𝑆𝑆𝑎𝑎𝒗𝒗𝑺𝑺𝒂𝒂 

1: 𝑣𝑣𝑆𝑆𝑣𝑣 𝒖𝒖𝑺𝑺𝒗𝒗 = 𝒖𝒖𝑹𝑹𝑳𝑳 + 𝑅𝑅𝑆𝑆𝑣𝑣𝒗𝒗𝑺𝑺𝒗𝒗 

1: 𝑣𝑣𝑇𝑇𝐿𝐿 𝒖𝒖𝑹𝑹𝑳𝑳 = 𝒖𝒖𝑹𝑹𝑴𝑴 + 𝑅𝑅𝑇𝑇𝐿𝐿𝒗𝒗𝑻𝑻𝑴𝑴 

1: 𝑣𝑣𝑃𝑃𝐿𝐿  𝒖𝒖𝑹𝑹𝑴𝑴 = 𝒖𝒖𝑷𝑷𝒂𝒂 + 𝑅𝑅𝑃𝑃𝐿𝐿𝒗𝒗𝑷𝑷𝑴𝑴 

1: 𝑣𝑣𝑃𝑃𝑎𝑎  𝒖𝒖𝑷𝑷𝒂𝒂 = 𝒖𝒖𝑷𝑷𝒗𝒗 + 𝑅𝑅𝑃𝑃𝑎𝑎𝒗𝒗𝑷𝑷𝒂𝒂 

1: 𝑣𝑣𝑃𝑃𝑣𝑣  𝒖𝒖𝑷𝑷𝒗𝒗 = 𝒖𝒖𝑳𝑳𝑳𝑳 + 𝑅𝑅𝑃𝑃𝑣𝑣𝒗𝒗𝑷𝑷𝒗𝒗 
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Figure 15. Cardiovascular system formulated with bond graph equations to ensure mass balance and energy balance. The 
major blood vessels (arteries and veins) are described discretely in relation to anatomical body coordinates. These are then 
coupled with organ-specific circulation models (shown here for one muscle) that are generated algorithmically for each 
organ. The whole body models run in real time on a laptop (pressure and flow solutions at a few points are shown).  
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